A Sheldon también le gusta Ubuntu

Si lo dice él, que es el más listo,  bueno tiene que ser …

Anuncios

La enseñanza de la Tecnología en Colombia

Este blog es editado en Las Islas Canarias y es por eso que la mayoría de los visitantes pertenecen a España, ya que los contenidos que se suben a este espacio son relativos al currículo de Tecnología del Sistema Educativo Español. Sin embargo, el mero hecho de que esté editado en español, una de las lenguas de mayor difusión en el mundo, implica que sea visitado desde multitud de países, especialmente del continente americano, como es lógico. El país desde el que más visitas se recibe, tras España es Colombia, lejos de otro país que tiene mucha más población, como es México. Me remito a las estadísticas: desde que se creó este blog ha sido visitado por 955814 personas (pronto llegaremos al millón), de los cuales 349429 (36,5%)  son españoles, 157113  (16,4%) son colombianos y 134854 (14,1%) son mejicanos. Es decir, que casi una de cada seis personas que visitan esta web es colombiana, lo cual es bastante.

Desde hace algún tiempo me ha intrigado este hecho y navegando por aquí y por allá he indagado un poco. Por lo que entiendo, en Colombia se da mucha importancia a la educación Tecnológica desde la infancia, no como aquí. En Colombia, si mal no me equivoco, dedican nueve cursos de enseñanza básica desde Preescolar hasta la educación media y la tecnología (llamada ‘Tecnología e informática’) se imparte desde el primer curso. Puedo estar equivocado, puesto que no tengo la información de primera mano, es decir, de un docente colombiano del área. Abunda material en la red de docentes de tecnología que publican sus propios materiales, contribuyendo entre el mundo hispanohablante de forma significativa y, a mi entender, la aportación colombiana resulta imprescindible. Para muestra un botón: el blog titulado “Tecnología e Informática en el aula“.

La imagen que se tiene de Colombia en el exterior, a mi entender, está muy lejos de la realidad. Si bien nunca he estado allí, Colombia es mucho más que el eterno conflicto de las FARC o el narcoterrorismo. Tengo entendido que tiene un sistema educativo desarrollado dentro de la emergente América Latina que supera ampliamente a la de los países vecinos, según me contó en su día cierto profesor licenciado en Pedagogía. El caso es que ellos han apostado decididamente por la educación de la ‘Tecnología’ y me alegro pues por ello. Ellos sí que tienen claro el valor de esta materia, no como los miopes que gobiernan España, empeñados en destruirla. Desde aquí debo agradecer al pueblo colombiano su interés por  esta, su web, y les animo a aportar ideas y experiencias para la enseñanza de este ámbito, tan importante para el desarrollo de cualquier nación, como es el de la ‘Tecnología’; y felicitar a los colombianos por su apuesta decida.

 

El motor V-12 más pequeño del mundo

Ahora que estoy con los mecanismos en 2º ESO y mirando aquí y allá, he descubierto esta joya de vídeo. No conozco la autoría del mismo, pero por lo que se aprecia, pertenece a un señor que para mí merece mi más sincero respeto. La obra de ingeniería que ha logrado este señor es impresionante. Crear de forma artesanal nada más y nada menos que un pequeño motor de 12 cilindros en V, con la complejidad que ello conlleva, y que funcione perfectamente, tiene un mérito más que merecido. Para colmo de bienes, el vídeo tiene buena factura y resulta didáctico, pues a medida que avanza la construcción se van mostrando los elementos del motor y cómo los va fijando en su sitio. Para rematar la buena faena, el vídeo está ejecutado con buena música para cine de grandes autores de la música para el cine de la cual, curiosamente, soy aficionado.

En definitiva: os aconsejo que le echéis un ojo, no tiene desperdicio. Un homenaje al trabajo preciso y bien hecho.

 

Para más información haz clic en PATELO

La palanca

 

La palanca es un sistema de transmisión lineal que consiste en una barra rígida que gira en torno a un punto de apoyo o articulación. en un punto de la barra se aplica una fuerza F (también llamada potencia) con el fin de vencer una resistencia R.

Podemos encontrar palancas allá donde miremos y siempre han estado entre nosotros desde que el ser humano tiene conciencia. Así, un simple palillo de dientes se puede considerar una palanca, al igual que una cuchara. En principio, el objetivo de la palanca es el de reducir el esfuerzo que una persona o máquina debe hacer para cumplir con un objetivo, aunque no todas las palancas nos ayudan a reducir tal esfuerzo.

Basándonos en la definición de palanca, podemos distinguir los siguientes elementos en la misma:

  • Potencia (F): o fuerza que aplicamos en un punto de la palanca para obtener un resultado. La fuerza la podemos aplicar manualmente con nuestra propia fuerza, o través de un motor o cualquier otro mecanismo.
  • Resistencia (R): fuerza que tenemos que vencer; es la que hace la palanca como consecuencia de haber aplicado nosotros la potencia.
  • Brazo de potencia (BP), distancia entre el punto en el que aplicamos la potencia y el punto de apoyo.
  • Brazo de resistenciaBr: distancia entre la fuerza de resistencia y el punto de apoyo.

carretilla

En el siguiente ejemplo, podemos observar una carretilla que, en realidad es una palanca. Allá donde actúa la persona que lleva la carretilla se aplica la fuerza o potencia (F), la carga que lleve la carretilla será la resistencia (R). Teniendo en cuenta que el punto de apoyo (O) se sitúa en el centro de la rueda, podemos concluir que el brazo de la potencia (BP) es la distancia de F a O, esto es, 1.6 m mientras que el brazo de la resistencia (BR) es la distancia de R a O, esto es, 0.4 m

Según la posición que ocupe la fuerza, la resistencia y el punto de apoyo en la palanca, existen tres tipos de palanca.

  • Palanca de primer grado: Es aquella en la que el punto de apoyo se encuentra entre la potencia y la resistencia. Si el punto de apoyo se encuentra más cerca de la resistencia que del punto donde se aplica la fuerza, podemos vencer grandes resistencias aplicando pequeños esfuerzos. Es nuestra idea intuitiva de palanca, algo que nos ayuda a mover una carga pesada. Como ejemplos clásicos podemos citar la pata de cabra, el balancín, los alicates o la balanza romana.
Esquema de una palanca de primer grado

Esquema de la palanca de primer grado

Ejemplos de palancas de primer grado

Ejemplos de palancas de primer grado

  • Palanca de segundo grado: Se obtiene cuando colocamos la resistencia entre la potencia y el punto de apoyo. Según esto el brazo de resistencia siempre será menor que el de potencia, por lo que el esfuerzo (potencia) será menor que la carga (resistencia) a vencer. Como ejemplos se puede citar el cascanueces, la carretilla o la perforadora de hojas de papel.
Esquema de la palanca de segundo grado

Esquema de la palanca de segundo grado

El cascanueces es un ejemplo de palanca de segundo grado, al igual que la carretilla de primera imagen

El cascanueces es un ejemplo de palanca de segundo grado, al igual que la carretilla de primera imagen

  • Palanca de tercer grado: Se obtiene cuando ejercemos la potencia entre el punto de apoyo y la resistencia. Esto trae consigo que el brazo de resistencia siempre sea mayor que el de potencia, por lo que el esfuerzo siempre será mayor que la carga (caso contrario al caso de la palanca de segundo grado). Ejemplos típicos de este tipo de palanca son las pinzas de depilar y la caña de pescar. Este tipo de palanca es ideal para situaciones de precisión, donde la fuerza aplicada es mayor que la resistencia a vencer. .
Esquema de la palanca de tercer grado

Esquema de la palanca de tercer grado

Una pinzas para depilar son un buen ejemplo de palanca de tercer grado

Una pinzas para depilar son un buen ejemplo de palanca de tercer grado

La ley de la palanca dice: Una palanca está en equilibrio cuando el producto de la fuerza F, por su distancia BP, al punto de apoyo es igual al producto de la resistencia R por su distancia BR, al punto de apoyo.

F·BP = R·BR

Esta fórmula nos dice una gran verdad: cuanto mayor sea la distancia de la fuerza aplicada al punto de apoyo (brazo de potencia), menor será el esfuerzo a realizar para vencer una determinada resistencia”. (BPF)

Resolvamos un ejemplo de ejercicio de palanca con la carretilla anterior. Supongamos que queremos cargar 80 kg de arena con la carretilla. Teniendo en cuenta que el valor del brazo de potencia es de 1,6 metros y el del brazo de la resistencia es 0,4 metros, podemos considerar:

  • BP = 1,6 m
  • BR= 0,4 m
  • R= 80 kgf,   kgf significa kilogramo-fuerza. Un kilogramo-fuerza es la fuerza necesaria para sostener un objeto de masa un kilogramo.

Sustituyendo

F · BP = R · BR

F · 1,6 = 80 · 0,4

F · 1,6 = 32  —-> F = 20 kgf

Conclusión: Para cargar con la carretilla 80 kg de arena, la persona tan solo debe ejercer una fuerza de 20 kgf.

 

 

Tecnología Industrial I. Fuentes de energía renovables. Energía de los océanos

En el siguiente enlace se pueden descargar los apuntes correspondientes al bloque de contenidos “Energía de los océanos

pdf-icon-thumbnail

Energía de los océanos

¿Tecnología? ¡Pues es eso tan moderno!

Primer día de clase. Alumnos de primero de la ESO que están a la expectativa. Y vas y haces la clásica pregunta… ¿Y qué es la tecnología? Pues… una asignatura de 1º ESO. Fulminante. El caso es que el primer día conviene intentar que salga el debate y por eso les pongo esta presentación basada en imágenes y  mientras tanto vamos analizando lo que la tecnología representa, más que lo qué es en sí. Tecnología, al fin y al cabo, es algo que han oído toda su vida, que asocian lo electrónico, a lo puntero, pero que, quizás, no conciben como aquello con lo que convives desde que te levantas hasta que duermes… y mientras duermes.

 

 

Introducción a la tecnologia

Lámparas y más lámparas: lámparas incandescentes

Ya publiqué en su momento un artículo comentando el fin de la producción y distribución de las lámparas incandescentes a partir del uno de septiembre de este año, pero dejé un poco en el aire las diferencias técnicas entre los diferentes tipos de lámparas. Así pues, toca hablar de ellas y, si la cosa se anima, pasaré en otra ocasión a “hablar” de los otros tipos de bombillas.

Comenzaré con las lámparas incandescentes, que fueron las primeras bombillas eléctricas que se utilizaron, de hecho, fue el famoso invento de Edison, aquel que le llevó a los anales de historia. Se basan en dos hechos simples: todos los cuerpos incandescentes emiten radiación electromagnética, mientras mayor sea la temperatura del cuerpo, mayor es la energía radiada y, de hecho, el rango del espectro electromagnético será distinto; por otra parte tenemos el otro hecho, el efecto Joule.

Por ejemplo, habréis visto esas pelis de guerreros medievales o tipo épico en la que se ve al herrero poner al fuego su espada. Al cabo de un tiempo, cuando la temperatura de la hoja de la espada está a cientos de grados centígrados, adquiere un color rojizo intenso. Si se calentase más, pasaría al amarillo, luego a un tono más bien blanco y finalmente a un tono blanco-azulado. Lo dicho, la temperatura influye en el rango del espectro que, en el caso de la luz, es el color. Así pues, ese filamento metálico de la bombilla brilla porque su temperatura es muy alta.

La temperatura del filamento de una bombilla alcanza, nada más y nada menos que, ¡¡los 2800 grados centígrados!! Para que os hagáis una idea, es, aproximadamente, la mitad de la temperatura de la superficie del Sol… ¡ahí es nada! Si le preguntáis a alguien, cuál es la temperatura más alta que puedes encontrar en una casa y citas esta cifra, pocos te creerán. Pero, ¿de qué material está hecho? Si lo miras con detenimiento, notarás que el filamento es metálico. El problema es que la mayoría de los metales se funden a esa temperatura, veamos ejemplos: Plomo, 327 ºC, uff!! ni por despiste; Aluminio, 660 ºC, que va! que va!; ¿cobre?, 1083 ºC; ¡pero chico! ¡sigue estando lejos!; ¿níquel?. 1453 ºC, es muy alto, pero ¡ni de broma!; el poco conocido molibdeno, 2617 ºC… este se acerca, pero se fundiría; la cuestión es que sólo hay cuatro candidatos, pero muy raros y carísimos; sólo el Wolframio (o tungsteno) es el candidato ideal, pues es relativamente económico (se emplea en la industria del hierro) y su punto de fusión es de 3410 ºC… ¡sobrado! Así pues, sometiendo este metal a esta temperatura, conseguiremos que se ponga incandescente y nos dé luz… Pero, ¿cómo?

El otro hecho físico, por el cual una bombilla brilla se llama efecto Joule y dice: que todo cuerpo ofrece resistencia al paso de la corriente eléctrica de modo que radía energía en forma de calor. La cantidad de calor depende de dos factores: la cantidad de corriente que circula (en Amperios) y el valor de la resistencia del cuerpo. El cuerpo en cuestión es el filamento y si se le hace pasar corriente eléctrica a su paso, este emite calor por el efecto Joule, eleva su temperatura hasta los 2800 ºC y…¡tenemos luz por incandescencia! El valor de la resistencia debe ser relativamente alto y depende, a su vez, de tres factores:

  1. El tipo de material: En este caso el Wolframio, que como metal, tiene baja resistencia; pero alta si se compara con otros.
  2. La longitud del filamento: Cuanto mayor sea, mayor será la resistencia. De hecho, si te fijas muy de cerca, verás que en realidad el filamento no es un simple hilo; es como un resorte muy pequeño. De este modo, con la longitud, consigues el valor de la resistencia emitida y, al tiempo, más luz.
  3. La sección del filamento: Eso es lo fino que es. Cuanto menor sea la sección, mayor será la resistencia y, es por esto, que los filamentos son tan finos y frágiles.

El término, la bombilla se funde, es parcialmente correcto. En realidad,  cuando la bombilla se ha apagado, evidentemente, la bombilla no se fundido, es decir, de repente no se derrite; pero lo que sí se ha podido fundir es el filamento de wolframio cuando ha venido una sobrecarga eléctrica, potenciando el efecto Joule y, por lo tanto, elevando la temperatura más allá de los 3400 ºC al que se funde el mental. De ahí la expresión, la bombilla se ha fundido.

Dentro del bulbo de vidrio hay un gas inerte. Si en lugar de este fuese aire, al encender la bombilla, ésta, en cuestión de segundos se fundiría. ¿Por qué? Pues porque, literalmente, se quema. De todos es sabido que si no hay aire (oxígeno), un fuego no se mantiene. Y es que si el filamento se pone incandescente en contacto con el oxígeno se produce una reacción de combustión que oxida el filamento y, por lo tanto, lo quema, lo funde. Para evitar esto, o se hace el vacío (caro) o se sustituye el aire por un gas que evita la combustión. La presión de este gas es baja y, por eso, cuando se rompe una bombilla que se oye ese ruido tan peculiar. Es una implosión (explosión hacia adentro).

Ventajas: Esta bombillas producen una luz estable desde que se activan y por otra parte, su gama de colores es muy amplia, según el tipo de filamento. Por otra parte, su luz es más natural, más viva, más cálida. Principal razón por la que, hasta ahora, mucha gente aún no renunciaba a ellas, aparte de su precio, pues son las más económicas. Otra ventaja poco mencionada, es la facilidad de reciclarlas y su bajo impacto ambiental al desecharlas, pues no contienen mercurio y el gas que contienen es inerte. Y por último, y no es broma, yo diría que son  más bonitas, aunque esta es mi opinión.

Inconvenientes: Su alto consumo. Consumo muchas veces más que las bombillas de bajo consumo, razón principal por la que se eliminaron del mercado. Su alto consumo, va en contra del medio ambiente y, a la larga, evita la emisión de gases de efecto invernadero que suponen el cambio climático. Además, está la cuestión de ahorro energético que, a la larga, suponen un ahorro económico. Por otra parte, como el efecto Joule es el fenómeno físico que fundamenta el funcionamiento de las bombillas, más de un 90% del consumo se pierde en forma de calor que, al fin y al cabo, no es el propósito. En definitiva, son menos eficientes.

Por último, no perdáis de vista el siguiente vídeo. Es corto y muy claro.

Ya veis, no todo son inconvenientes y es por ello que te echaré de menos, mi hermosa, sensual y socorrida lámpara incandescente.